

Next-generation analysis methods for modern surveys

Brian Nord

with T. Mckay, J. McMahon, C. Miller T. Biesiadzinski, B. Moreland, E. Rykoff

Overview: Probing dark energy with galaxy clusters

- Brief Review of Modern Cosmology
 - Dark energy: cosmological effects and physical composition
 - Probing the expansion rate with large-scale structure
- **Clusters of Galaxies and DM Halo Counterparts**
 - how do they teach us about expansion?
 - Connecting observables and mass
- Maximizing Output of Multi-wavelength Surveys
 - Multi-wavelength Mass calibration
 - Detecting cluster centers and substructures
 - Joint-wavelength cluster analysis

Cosmology today

13.7 billion years

Basic Properties

Fluid with negative pressure -- **piston pulled from outside** Isotropic, homogeneous distribution

<u>Two Canonical Options</u> Constant Vacuum energy: the cost of having space

> Evolving Scalar field ("quintessence") parametrize equation of state parameter via a constant and a slope

e.g.,
$$w(a) = w_0 + w_a(1-a)$$

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + g_{\mu\nu}\Lambda = \frac{8\pi G}{c^4}T_{\mu\nu} \quad \text{(Einstein Field Eqn)}$$

$$\dot{\rho} = -3H\left(\rho + \right)$$

$$p = w\rho$$
 $w = -1$

(continuity Eqn)

(Solution to continuity Eqn)

Basic Properties

Fluid with negative pressure -- **piston pulled from outside** Isotropic, homogeneous distribution

<u>Two Canonical Options</u> Constant Vacuum energy: the cost of having space

> Evolving Scalar field ("quintessence") parametrize equation of state parameter via a constant and a slope

e.g.,
$$w(a) = w_0 + w_a(1-a)$$

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R +$$

$$\dot{\rho} = -3H\left(\rho + \right)$$

$$p = w\rho$$
 $w = -1$

Or Einstein's work is not finished!

(continuity Eqn)

(Solution to continuity Eqn)

Two Universes, both just like ours, except for the dark energy parameter.

 $\frac{Parameters}{\Omega_m = 0.30}$ $\sigma_8 = 0.85$ $H_0 = 70.0 [km/s/Mpc]$ $\Omega_{\Lambda} = ?$

Can you tell the difference?

Two Universes, both just like ours, except for the dark energy parameter.

<u>Parameters</u> Ω_m=0.30 $\sigma_8 = 0.85$ $H_0 = 70.0 [km/s/Mpc]$ $\Omega_{\wedge} = ?$

Can you tell the difference?

Two Universes, both just like ours, except for the dark energy parameter.

Parameters $\Omega_{\rm m} = 0.30$ $\sigma_8 = 0.85$ $H_0 = 70.0 [km/s/Mpc]$ $\Omega_{\Lambda} = ?$

Can you tell the difference?

$\ddot{\delta} + [\text{Pressure} - \text{Gravity}]\delta = 0$ **Gravitational Instability** ╋ $g(a) \propto H(a) \int^a \frac{\mathrm{d}a'}{[a'H(a')]^3}$ linear growth

6

Two Universes, both just like ours, except for the dark energy parameter.

Parameters $\Omega_{\rm m} = 0.30$ $\sigma_8 = 0.85$ $H_0 = 70.0 [km/s/Mpc]$ $\Omega_{\Lambda} = ?$

Can you tell the difference?

$\ddot{\delta} + [\text{Pressure} - \text{Gravity}]\delta = 0$ **Gravitational Instability** ╋ $g(a) \propto H(a) \int^a \frac{\mathrm{d}a'}{[a'H(a')]^3}$ linear growth

6

Two Universes, both just like ours, except for the dark energy parameter.

Parameters Ω_m=0.30 $\sigma_8 = 0.85$ $H_0 = 70.0 [km/s/Mpc]$ $\Omega_{\Lambda} = ?$

Can you tell the difference?

LCDM, $\Omega_{\Lambda} = 0.7$ OCDM, $\Omega_{\Lambda} = 0.0$

$\ddot{\delta} + [\text{Pressure} - \text{Gravity}]\delta = 0$ **Gravitational Instability** ╋ $g(a) \propto H(a) \int^{a} \frac{\mathrm{d}a'}{[a'H(a')]^3}$ linear growth

6

Dark Matter halos are actually more concentrated in LCDM cosmologies! (Dolag et al., 2003)

The halo mass function houses principle parameters.

Acquiring large halo populations is the key to using clusters as cosmological probes.

The halo mass function houses principle parameters.

Acquiring large halo populations is the key to using clusters as cosmological probes.

[h³ Mpc⁻³] density space

Mass

The halo mass function houses principle parameters.

Acquiring large halo populations is the key to using clusters as cosmological probes.

E.g., σ_8 is the variance in halo masses on a given size scale.

[h³ Mpc⁻³] density space 10^{-8}

Thursday, January 5, 12

Mass

Mass [M]

• Simulations are the touchstone and testing ground for cosmology and mass calibration

Mass [M]

• Simulations are the touchstone and testing ground for cosmology and mass calibration

Galaxy Cluster Observables

Mass [M]

 Simulations are the touchstone and testing ground for cosmology and mass calibration

Galaxy Cluster Observables

<u>Optical Richness</u> [Ngals].....P(Ngals | M,z)

- + Catalogues are volume-limited to low masses.
- High scatter in mass-richness (e.g., substructure, selection).

σ_{Ngals} M ~ 35-50%

Mass [M]

• Simulations are the touchstone and testing ground for cosmology and mass calibration

Galaxy Cluster Observables

Optical Richness [Ngals].....P(Ngals | M,z)

- High scatter in mass-richness (e.g., substructure, selection).

<u>Sub-mm</u> [Y_{SZ}]..... $y_{SZ} \propto \int p d\ell$

- + Signal provides all clusters in volume. Small mass-scatter.
- No redshifts. Young survey technology: high mass-limit.

Mass [M]

• Simulations are the touchstone and testing ground for cosmology and mass calibration

Galaxy Cluster Observables

Optical Richness [Ngals].....P(Ngals | M,z)

- + Catalogues are volume-limited to low masses.
- High scatter in mass-richness (e.g., substructure, selection).

- <u>Sub-mm</u> [Y_{SZ}]..... $y_{SZ} \propto \int p d\ell$
 - + Signal provides all clusters in volume. Small mass-scatter.
 - No redshifts. Young survey technology: high mass-limit.

- <u>X-ray</u> [T_x]..... $\epsilon_X \propto T^{1/2} n_e n_i$
 - + Clear identification at high mass and low redshift. Small scatter.
 High mass-limit, small numbers; defining selection function.

Cluster abundances probe dark energy and large-scale structure

Richness, Ngals

Cluster abundances probe dark energy and large-scale structure

From cluster abundances, we can measure key cosmological features with cluster abundances.

Cluster mass calibration challenge: the trifecta

We face a suite of challenges in calibrating cluster masses with each observable signature.

Cluster mass calibration challenge: the trifecta

SZ

Correlations among X-ray observables clarify that evolution of the scaling relations (e.g., L_x - T_x) is degenerate with scatter (Nord et al., 2008).

Cluster mass calibration: the trifecta

Principle sources of scatter are centering and projection/ (Rozo, ..., Nord et al., 2011)

Observed substructure of clusters obfuscates cluster cosmology

Nearby projected mass affects ~15% of all haloes---the cluster-to-cluster

Observed substructure of clusters obfuscates cluster cosmology

Projection via blending degrades dark energy constraints: even moderate blends increase uncertainties of both **Ω**_Λ (5%) and w (12%).

Nearby projected mass affects ~15% of all haloes---the cluster-to-cluster background.

Fisher Matrix predictions

The weak lensing contrasts profiles are dramatically reduced and flattened.

Cluster mass calibration: cross the streams!

Cluster mass calibration: cross the streams!

Cluster mass calibration: cross the streams!

Weak Lensing and X-ray Luminosity stacked on Richness of maxBCG clusters gives a new measurement of the L_{x} -M relation to date. (Rykoff, ..., Nord et al., 2008)

Cluster mass calibration: the trifecta

SZ-Optical richness scaling relations are now being explored for the first time in data. SZ

X-ray

Do optical, SZ and X-ray mass proxies agree?

Stacking the SZ decrement: collecting the SZ signal within an optical richness bin...

... and taking the average within that bin.

Recent history of stacking:

- weak lensing mass of optical clusters (Sheldon/Johnston et al., 2006/7)
- theoretical SZ-optical crosscorrelation (Fang et al. 2011, Li et al., 2011)

Cluster mass calibration: the trifecta

X-ray

To maximize the utility of clusters in cosmological studies, we must reconcile mass calibration across multiple wavebands.

SZ

Cluster mass calibration: the trifecta

X-ray

To maximize the utility of clusters in cosmological studies, we must reconcile mass calibration across multiple wavebands.

SZ

Multiple sources of scatter can be calibrated for optical clusters.

The maxBCG cluster-finding algorithm is highly imperfect at choosing centers. We need to broaden beyond the BCGdefined Likelihood method.

Consider a new approach to measuring substructure.

We look at the cluster as a network of galaxies with nodes and edges.

Consider a new approach to measuring substructure.

We look at the cluster as a network of galaxies with nodes and edges.

Consider a new approach to measuring substructure.

We look at the cluster as a network of galaxies with nodes and edges.

Consider a network of linked by mutual gravitational attraction

The <u>weight</u> of links between galaxies is a proxy for gravitational attraction:

$$w_{ij} \sim \tilde{\Phi} \sim \frac{\sqrt{L_i L_j}}{r_{ij}}$$

Consider a network of linked by mutual gravitational attraction

The <u>weight</u> of links between galaxies is a proxy for gravitational attraction:

$$w_{ij} \sim \tilde{\Phi} \sim \frac{\sqrt{L_i L_j}}{r_{ij}}$$

The <u>degree</u> of one galaxy is the sum total of the weights in all its links and a proxy for the total gravitational potential energy:

$$d_1 = \sum w_{1j}$$

SkyNet centering: tests with single clusters and weak lensing

The halo center is chosen by Skynet as the most connected galaxy, and thus the center.

SkyNet centering: tests with single clusters and weak lensing

The halo center is chosen by Skynet as the most connected galaxy, and thus the center.

• Stacking ~450 clusters in SDSS Stripe 82 at z~0.4 Skynet finds centers at least as good as the 'BCG'

Skynet reveals optical cluster substructure

Some centers are inherently ambiguous:

this leads us to notions of substructure -- both dynamical and projection-related.

Cluster mass calibration: the trifecta

optically detected

We apply a Monte Carlo simulation of all systematic effects known in the maxBCG cluster catalogue to a halo catalogue to assess the impact on stacked SZ measurements

Family of systematics:

mass-richness calibration

• Rozo et al., 2009; Johnston et al., 2007 catalogue systematics

- catalogue completeness/purity
- photometric redshift
- mass scatter
- mis-centering

 $\gamma_{500}E(z)^{-2/3}(D_A(z)/500 \text{ Mpc})^2 [\operatorname{arcmin}^2]$

optically detected

We apply a Monte Carlo simulation of all systematic effects known in the maxBCG cluster catalogue to a halo catalogue to assess the impact on stacked SZ measurements

Family of systematics:

mass-richness calibration

• Rozo et al., 2009; Johnston et al., 2007 catalogue systematics

- catalogue completeness/purity
- photometric redshift
- mass scatter
- mis-centering

Baseline Rozo model with Planck error bars Our Model with Monte Carlo of systematics

We apply a Monte Carlo simulation of all systematic effects known in the maxBCG cluster catalogue to a halo catalogue to assess the impact on stacked SZ measurements

Family of systematics:

mass-richness calibration

• Rozo et al., 2009; Johnston et al., 2007 catalogue systematics

- catalogue completeness/purity
- photometric redshift
- mass scatter

mis-centering

Baseline Rozo model with Planck error bars Our Model with Monte Carlo of systematics

We apply a Monte Carlo simulation of all systematic effects known in the maxBCG cluster catalogue to a halo catalogue to assess the impact on stacked SZ measurements

Family of systematics:

mass-richness calibration

- Rozo et al., 2009; Johnston et al., 2007 catalogue systematics
 - catalogue completeness/purity
 - photometric redshift
 - mass scatter
 - mis-centering

Results:

- Systematics in the mass-richness calibration cause a large range in the model behavior: 25-50% (1σ-2σ)
- Mean from Monte Carlo of systematic miscentering is **biased low by 20%** with **12-25%** range in scatter
- Both of these MC models are less biased than the Rozo model

Baseline Rozo model with Planck error bars Our Model with Monte Carlo of systematics

Including systematics brings *near*-agreement.

Simulations without systematics are significantly offset from the Planck data.

Simply accounting for systematics brings the model and data close to agreement.

Joint cluster abundance analysis

W

Joint cluster abundance analysis

While basic combining can bring more clusters, fully joint analysis can improve dark energy constraints by factors 2-3.

Conjoin optical and SZ maps through signal-to-noise measurements.

SZ maps with noise

8

Filtered SZ maps

Conjoin optical and SZ maps through signal-to-noise measurements.

Statistical Question:	<u>Appro</u>
What's the probability that a cluster lives at any given location in the map?	Fit bet to ma
	the match

<u>bach</u>:

- ta profiles to optical density ake s/n maps
- e same as the process for SZ h-filter detection.

Optical S/N for each pixel (proof of concept)

Cluster Model: Beta Profile

$$\psi(\theta|A,\theta_c,\beta) = A \left[1 - \left(\frac{\theta}{\theta_c}\right)^2 \right]$$

Optical S/N for each pixel (proof of concept)

Cluster Model: Beta Profile

$$\psi(\theta|A,\theta_c,\beta) = A \left[1 - \left(\frac{\theta}{\theta_c}\right)^2 \right]$$

<u>Schematic of</u> <u>Galaxies in Cluster</u>

Optical S/N for each pixel (proof of concept)

Cluster Model: Beta Profile

$$\psi(\theta|A,\theta_c,\beta) = A \left[1 - \left(\frac{\theta}{\theta_c}\right)^2 \right]$$

<u>Schematic of</u> <u>Galaxies in Cluster</u>

$$S/N = \frac{\langle A \rangle}{\sigma_A}$$

core radius

S/N Measurement Process

1. Measure the poisson noise in each radial bin
2.Fit for <A>
3.Error in fit is σA

Optical S/N calculations and maps (proof of concept)

Mass [Msol]	7.00E+14	2.00E+14
z	0.25	0.75
Ngal	814	478
S/N	4.5	١.7

We can measure the S/N in optical maps to prepare for comparison and combination with SZ S/N maps.

6'x 6' Optical S/N Maps

Clusters found by the c4 clusterfinding algorithm

Halo SZ

 $(S/N)_{optical} = 7.5$

We can find a cluster and select the right halo with this joint-signal analysis.

Concluding remarks and Looking forward

<u>How do we realize the potential of clusters?</u>

Calibrate Masses:

- ... Seek out systematic effects and re-calibrate
- ... Cross-calibrate clusters across multiple wavebands.

Jointly detect clusters for larger numbers

- ... Prepare with the large simulations of DES
- ... Perform the full test of measuring cosmology with the joint catalogues and calibrations.

... have the power to deliver constraints on Ω_{Λ} , Ω_{M} and σ_{8} via the mass function.

... have large scatter in mass measurement.

